منابع مشابه
Nonlinear $*$-Lie higher derivations on factor von Neumann algebras
Let $mathcal M$ be a factor von Neumann algebra. It is shown that every nonlinear $*$-Lie higher derivation$D={phi_{n}}_{ninmathbb{N}}$ on $mathcal M$ is additive. In particular, if $mathcal M$ is infinite type $I$factor, a concrete characterization of $D$ is given.
متن کاملOn a Theorem of Von Neumann
1. Introduction. Let 5 be a measure space with a countably additive , (T-finite, complete (non-negative) measure. J. von Neumann has proved that, from each class x of measurable sets modulo null sets of 5, a representative set R(x)Ex can be picked in such a way
متن کاملOn Ulam-von Neumann Transformations
We define and study Ulam-von Neumann transformations which are certain interval mappings and conjugate to q(x) = 1 — 2x on [—1,1]. We use a singular metric on [—1,1] to study a Ulam-von Neumann transformation. This singular metric is universal in the sense that it does not depend on any particular mapping but only on the exponent of this mapping at its unique critical point. We give the smooth ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Kodai Mathematical Journal
سال: 1956
ISSN: 0386-5991
DOI: 10.2996/kmj/1138843772